Label-Free Optical Detection of Biomolecular Translocation through Nanopore Arrays
نویسندگان
چکیده
In recent years, nanopores have emerged as exceptionally promising single-molecule sensors due to their ability to detect biomolecules at subfemtomole levels in a label-free manner. Development of a high-throughput nanopore-based biosensor requires multiplexing of nanopore measurements. Electrical detection, however, poses a challenge, as each nanopore circuit must be electrically independent, which requires complex nanofluidics and embedded electrodes. Here, we present an optical method for simultaneous measurements of the ionic current across an array of solid-state nanopores, requiring no additional fabrication steps. Proof-of-principle experiments are conducted that show simultaneous optical detection and characterization of ssDNA and dsDNA using an array of pores. Through a comparison with electrical measurements, we show that optical measurements are capable of accessing equivalent transmembrane current information.
منابع مشابه
Probing Solid-State Nanopores with Light for the Detection of Unlabeled Analytes
Nanopore sensing has enabled label-free single-molecule measurements on a wide variety of analytes, including DNA, RNA, and protein complexes. Much progress has been made toward biotechnological applications; however, electrically probing the ion current introduces nonideal noise components. Here we further develop a method to couple an ionic current to a photon-by-photon counting of fluorescen...
متن کاملProgress toward ultrafast DNA sequencing using solid-state nanopores.
BACKGROUND Measurements of the ionic current flowing through nanometer-scale pores (nanopores) have been used to analyze single DNA and RNA molecules, with the ultimate goal of achieving ultrafast DNA sequencing. However, attempts at purely electronic measurements have not achieved the signal contrast required for single nucleotide differentiation. In this report we propose a novel method of op...
متن کاملDetection of Ammonia and Phosphine Gas using Heterojunction Biomolecular Chain with Multilayer GaAs Nanopore Electrode
This paper presents Density Functional Theory and Non-Equilibrium Green’s Function based First Principles calculations to explore the sensing property of Adenine and Thymine based hetero-junction chins for Ammonia and Phosphine gas molecules. This modeling and simulation technique plays an important and crucial role in the fast growing semiconductor based nanotechnology field. The hetero-juncti...
متن کاملSolid-state nanopores and nanopore arrays optimized for optical detection.
While conventional solid-state nanopore measurements utilize ionic current, there is a growing interest in alternative sensing paradigms, including optical detection. However, a limiting factor in the application of optical schemes in particular is the inherent background fluorescence created by the solid-state membrane itself, which can interfere with the desired signal and place restrictions ...
متن کاملThermally modulated biomolecule transport through nanoconfined channels
In this work, a nanofluidic device containing both a feed cell and a permeation cell linked by nanopore arrays has been fabricated, which is employed to investigate thermally controlled biomolecular transporting properties through confined nanochannels. The ionic currents modulated by the translocations of goat antibody to human immunoglobulin G (IgG) or bovine serum albumin (BSA) are recorded ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2014